Recall

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1
$$

What happens if $n=-1$?
Definition We can define a function which is an anti-derivative for x^{-1} using the Fundamental Theorem of Calculus: We let

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

This function is called the natural logarithm.

Note that $\ln (x)$ is the area under the continuous curve $y=\frac{1}{t}$ between 1 and x if $x>1$ and minus the area under the continuous curve $y=\frac{1}{t}$ between 1 and x if $x<1$.
We have $\ln (2)$ is the area of the region shown in the picture on the left above and $\ln (1 / 2)$ is minus the area of the region shown in the picture on the right above.

I do not have a formula for $\ln (x)$ in terms of functions studied before, however I could estimate the value of $\ln (2)$ using a Riemann sum. The approximating rectangles for a left Riemann sum with 10 approximating rectangles is shown below. Their area adds to 0.718771 (to 6 decimal places). If we took the limit of such sums as the number of approximating rectangles tends to infinity, we would get the actual value of $\ln (2)$, which is 0.693147 (to 6 decimal places). The natural logarithm function is a vuilt in function on most scientific calculators.

With very little work, using a right Riemann sum with 1 approximating rectangle, we can get a lower bound for $\ln (2)$. The picture below demonstrates that $\ln 2=\int_{1}^{2} \frac{1}{t} d t>1 / 2$.

Properties of the Natural Logarithm:

We can use our tools from Calculus I to derive a lot of information about the natural logarithm.

1. Domain $=(0, \infty)$ (by definition)
2. Range $=(-\infty, \infty)$ (see later)
3. $\underline{\ln x>0}$ if $x>1, \ln x=0$ if $x=1, \ln x<0$ if $x<1$.

This follows from our comments above after the definition about how $\ln (x)$ relates to the area under the curve $y=1 / x$ between 1 and x.
4. $\frac{d(\ln x)}{d x}=\frac{1}{x}$

This follows from the definition and the Fundamental Theorem of Calculus.
5. The graph of $y=\ln x$ is increasing, continuous and concave down on the interval $(0, \infty)$.

Let $f(x)=\ln (x), f^{\prime}(x)=1 / x$ which is always positive for $x>0$ (the domain of f), Therefore the graph of $f(x)$ is increasing on its domain. We have $f^{\prime \prime}(x)=\frac{-1}{x^{2}}$ which is always negative, showing that the graph of $f(x)$ is concave down. The function f is continuous since it is differentiable.
6. The function $f(x)=\ln x$ is a one-to-one function.

Since $f^{\prime}(x)=1 / x$ which is positive on the domain of f, we can conclude that f is a one-to-one function.
7. Since $f(x)=\ln x$ is a one-to-one function, there is a unique number, e, with the property that

$$
\ln e=1
$$

We have $\ln (1)=0$ since $\int_{1}^{1} 1 / t d t=0$. Using a Riemann sum with 3 approximating rectangles, we see that $\ln (4)>1 / 1+1 / 2+1 / 3>1$. Therefore by the intermediate value theorem, since $f(x)=\ln (x)$ is continuous, there must be some number e with $1<e<4$ for which $\ln (e)=1$. This number is unique since the function $f(x)=\ln (x)$ is one-to-one.

We will be able to estimate the value of e in the next section with a limit. $e \approx 2.7182818284590$.
The following properties are very useful when calculating with the natural logarithm:

$$
\begin{gathered}
\text { (i) } \ln 1=0 \\
\text { (ii) } \ln (a b)=\ln a+\ln b \\
\text { (iii) } \ln \left(\frac{a}{b}\right)=\ln a-\ln b \\
\text { (iv) } \ln a^{r}=r \ln a
\end{gathered}
$$

where a and b are positive numbers and r is a rational number.
Proof (ii) We show that $\ln (a x)=\ln a+\ln x$ for a constant $a>0$ and any value of $x>0$. The rule follows with $x=b$. Let $f(x)=\ln x, \quad x>0$ and $g(x)=\ln (a x), \quad x>0$. We have $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=\frac{1}{a x} \cdot a=\frac{1}{x}$.

Since both functions have equal derivatives, $f(x)+C=g(x)$ for some constant C. Substituting $x=1$ in this equation, we get $\ln 1+C=\ln a$, giving us $C=\ln a$ and $\ln a x=\ln a+\ln x$.
(iii) Note that $0=\ln 1=\ln \frac{a}{a}=\ln a \cdot \frac{1}{a}=\ln a+\ln \frac{1}{a}$, giving us that $\ln \frac{1}{a}=-\ln a$.

Thus we get $\ln \frac{a}{b}=\ln a+\ln \frac{1}{b}=\ln a-\ln b$.
(iv) Comparing derivatives, we see that

$$
\frac{d\left(\ln x^{r}\right)}{d x}=\frac{r x^{r-1}}{x^{r}}=\frac{r}{x}=\frac{d(r \ln x)}{d x}
$$

Hence $\ln x^{r}=r \ln x+C$ for any $x>0$ and any rational number r. Letting $x=1$ we get $C=0$ and the result holds.

Example Expand

$$
\ln \frac{x^{2} \sqrt{x^{2}+1}}{x^{3}}
$$

using the rules of logarithms.

Example Express as a single logarithm:

$$
\ln x+3 \ln (x+1)-\frac{1}{2} \ln (x+1)
$$

Example Evaluate $\int_{1}^{e^{2}} \frac{1}{t} d t$

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim _{x \rightarrow \infty} \ln x=\infty, \quad \lim _{x \rightarrow 0} \ln x=-\infty .
$$

Proof We saw above that $\ln 2>1 / 2$. If $x>2^{n}$, then $\ln x>\ln 2^{n}$ (Why ?). So $\ln x>n \ln 2>n / 2$. Hence as $x \rightarrow \infty$, the values of $\ln x$ also approach ∞.

Also $\ln \frac{1}{2^{n}}=-n \ln 2<-n / 2$. Thus as x approaches 0 the values of $\ln x$ approach $-\infty$.
Note that we can now draw a reasonable sketch of the graph of $y=\ln (x)$, using all of the information derived above.

Example Find the limit $\lim _{x \rightarrow \infty} \ln \left(\frac{1}{x^{2}+1}\right)$.

We can extend the applications of the natural logarithm function by composing it with the absolute value function. We have :

$$
\ln |x|=\left\{\begin{array}{cc}
\ln x & x>0 \\
\ln (-x) & x<0
\end{array}\right.
$$

This is an even function with graph

We have $\ln |x|$ is also an antiderivative of $1 / x$ with a larger domain than $\ln (x)$.

$$
\frac{d}{d x}(\ln |x|)=\frac{1}{x} \text { and } \int \frac{1}{x} d x=\ln |x|+C
$$

We can use the chain rule and integration by substitution to get

$$
\frac{d}{d x}(\ln |g(x)|)=\frac{g^{\prime}(x)}{g(x)} \text { and } \int \frac{g^{\prime}(x)}{g(x)} d x=\ln |g(x)|+C
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

Example Find the integral

$$
\int \frac{x}{3-x^{2}} d x
$$

Logarithmic Differentiation

To differentiate $y=f(x)$, it is often easier to use logarithmic differentiation :

1. Take the natural logarithm of both sides to get $\ln y=\ln (f(x))$.
2. Differentiate with respect to x to get $\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x} \ln (f(x))$
3. We get $\frac{d y}{d x}=y \frac{d}{d x} \ln (f(x))=f(x) \frac{d}{d x} \ln (f(x))$.

Example Find the derivative of $y=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}$.

Extra Examples

Please try to work through these questions before looking at the solutions. Example Expand $\ln \left(\frac{e^{2} \sqrt{a^{2}+1}}{b^{3}}\right)$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

Example Find $d / d x \ln (|\cos x|)$.

Example Find the integral

$$
\int \cot x d x
$$

Example Find the integral

$$
\int_{e}^{e^{2}} \frac{1}{x \ln x} d x
$$

Example Find the derivative of $y=\frac{\sin ^{2} x \tan ^{4} x}{\left(x^{2}-1\right)^{2}}$.

Old Exam Question Differentiate the function

$$
f(x)=\frac{\left(x^{2}-1\right)^{4}}{\sqrt{x^{2}+1}} .
$$

Solutions

Example Expand $\ln \left(\frac{e^{2} \sqrt{a^{2}+1}}{b^{3}}\right)$

$$
\begin{gathered}
\ln \left(\frac{e^{2} \sqrt{a^{2}+1}}{b^{3}}\right)=\ln \left(e^{2} \sqrt{a^{2}+1}\right)-\ln \left(b^{3}\right)=\ln \left(e^{2}\right)+\ln \left(\sqrt{a^{2}+1}\right)-3 \ln b \\
=2 \ln e+\frac{1}{2} \ln \left(a^{2}+1\right)-3 \ln b=2+\frac{1}{2} \ln \left(a^{2}+1\right)-3 \ln b
\end{gathered}
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.
We use the chain rule here

$$
\frac{d}{d x} \ln |\sqrt[3]{x-1}|=\frac{1}{\sqrt[3]{x-1}} \cdot \frac{1}{3}(x-1)^{-2 / 3}=\frac{1}{3(x-1)}
$$

Example Find $d / d x \ln (|\cos x|)$.
Again, we use the chain rule

$$
\frac{d}{d x} \ln |\cos x|=\frac{1}{\cos x} \cdot(-\sin x)=-\tan x
$$

Example Find the integral

$$
\begin{gathered}
\int \cot x d x \\
\int \cot x d x=\int \frac{\cos x}{\sin x} d x
\end{gathered}
$$

We use substitution. Let $u=\sin x, d u=\cos x d x$.

$$
\int \frac{\cos x}{\sin x} d x=\int \frac{d u}{u}=\ln |u|+C=\ln |\sin x|+C .
$$

Example Find the integral

$$
\int_{e}^{e^{2}} \frac{1}{x \ln x} d x
$$

We use substitution. Let $u=\ln x, d u=\frac{1}{x} d x . u(e)=\ln e=1, u\left(e^{2}\right)=\ln e^{2}=2$.

$$
\int_{e}^{e^{2}} \frac{1}{x \ln x} d x=\int_{1}^{2} \frac{d u}{u}=\left.\ln |u|\right|_{1} ^{2}=\ln 2-\ln 1=\ln 2 .
$$

Example Find the derivative of $y=\frac{\sin ^{2} x \tan ^{4} x}{\left(x^{2}-1\right)^{2}}$.
We use Logarithmic differentiation. If $y=\frac{\sin ^{2} x \tan ^{4} x}{\left(x^{2}-1\right)^{2}}$, then

$$
\ln y=\ln \left(\sin ^{2} x\right)+\ln \left(\tan ^{4} x\right)-\ln \left(\left(x^{2}-1\right)^{2}\right)=2 \ln (\sin x)+4 \ln (\tan x)-2 \ln \left(x^{2}-1\right)
$$

Differentiating both sides with respect to x, we get

$$
\frac{1}{y} \frac{d y}{d x}=\frac{2 \cos x}{\sin x}+\frac{4 \sec ^{2} x}{\tan x}-\frac{2(2 x)}{x^{2}-1}
$$

Multiplying both sides by y and converting to a function of x, we get

$$
\frac{d y}{d x}=y\left[\frac{2 \cos x}{\sin x}+\frac{4 \sec ^{2} x}{\tan x}-\frac{4 x}{x^{2}-1}\right]=\left(\frac{\sin ^{2} x \tan ^{4} x}{\left(x^{2}-1\right)^{2}}\right)\left[\frac{2 \cos x}{\sin x}+\frac{4 \sec ^{2} x}{\tan x}-\frac{4 x}{x^{2}-1}\right]
$$

Old Exam Question Differentiate the function

$$
f(x)=\frac{\left(x^{2}-1\right)^{4}}{\sqrt{x^{2}+1}}
$$

We use Logarithmic differentiation. If $y=\frac{\left(x^{2}-1\right)^{4}}{\sqrt{x^{2}+1}}$, then

$$
\ln y=4 \ln \left(x^{2}-1\right)-\frac{1}{2} \ln \left(x^{2}+1\right)
$$

Differentiating both sides with respect to x, we get

$$
\frac{1}{y} \frac{d y}{d x}=\frac{4(2 x)}{x^{2}-1}-\frac{2 x}{2\left(x^{2}+1\right)}
$$

Multiplying both sides by y and converting to a function of x, we get

$$
\frac{d y}{d x}=y\left[\frac{8 x}{x^{2}-1}-\frac{x}{\left(x^{2}+1\right)}\right]=\left(\frac{\left(x^{2}-1\right)^{4}}{\sqrt{x^{2}+1}}\right)\left[\frac{8 x}{x^{2}-1}-\frac{x}{\left(x^{2}+1\right)}\right]
$$

